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ABSTRACT

Dispersion and dissipation phenomena associated with waves propa-
gating in blood vessels are potential measures of the distensibility of
the vessels and other cardiovascular parameters. In this investigation
we assume the vessels to behave like thin-walled circular cylindrical
shells filled with an inviscid compressible fluid. The vessel wall is
assumed to have isotropic and homogeneous viscoelastic properties. The
waves are described by small three-dimensional displacements of the middle
surf'ace of the shell from an equilibrium configuration defined by a mean
transmural pressure and an initial axial strain. The fluid motion
associated with the waves is considered as irrotational. The linearized
differential equations of motion are based on the shell equations derived
by Flugge.

While all previocus work on wave propagation in blood vessels has
been restricted to axisymmetric waves, we include in our consideration
waves which exhibit a circumferential dependence of the corresponding
displacements of the vessel wall. For each circumferential wave number
we find infinitely many waves with individual speeds of propagation, of
which only the three slowest waves are not due to the compressibility of
the fluid. In this study we disregard all but the three slowest waves,
and denote these as waves of type I, II and III. In waves of type I the
radial displacement component is dominant at high frequencies, while
in waves of type II the circumferential and in waves of type III the axial
displacement component dominate at high frequencies. Of these three
types of waves, those of type II and III are less important from the
practical point of view, since only type I waves are associated with

significant internal pressure fluctuations.
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The results of a parametric analysis assuming a purely elastic model
for the vessel wall indicate that axisymmetric waves are only mildly
dispersive while non-axisymmetric waves are highly dispersive and exhibit
cut-off phenomena. Thetransmural pressure and the initial axial stretch
can have a marked effect on phase velocities, mode shapes and cut-off
frequencies of waves of all three types.

The viscoelastic properties of the vessel wall are treated by
assuming that the wall material is incompressible but behaves as a Voigt
so0lid in shear. Using such a viscoelastic model it is found that the
decrease per wavelength in wave amplitudes is essentially independent of
frequency over a wide range of high frequencies. This result is in
gualitative agreement with recent experiments on the dissipation of high
frequency waves in the thoracic aorta of anesthetized dogs. Axisymmetric
waves of type II and type III exhibit stronger dispersion as compared with
the elastic case, while those of type I remain only slightly dispersive.
In contrast to the elastic case, non-axisymmetric waves are propagated
at all frequencies, although the damping per wavelength of such waves
is very strong at frequencies below the elastic cut-off point. For
viscoelastic walls the dissipation of waves shows a high sensitivity to
changes in the transmural pressure and initial axial stretch. Consequently,
the reliable estimation of the viscoelastic parameters of the vessel wall
from experiments involving high frequency wave propagation must take into

consideration the effects of axial stretch and transmural pressure.
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NOMENCLATURE
um radius of the middle surface of the vessel wall
wave amplitude at a distance of one wavelength from origin

wave amplitude at origin
mode amplitudes for circumferential wave number s, phase velocity c

L. - axial phase velocity

KR

(SEO/pW)l/2 = normalizing phase velocity (viscoelastic shell)
speed of sound in blood

[E/pw(l-v2)]l/2 = normalizing phase velocity (elastic shell)

0
S~

Q

1

dimensionless phase velocity (elastic shell)

1Y
c/cb = dimensionless phase velocity (viscoelastic shell)
cf/cp = dimensionless speed of sound in blood (elastic shell)
Cf/cb = dimensionless speed of sound in blood (viscoelastic shell)

3/dt = differential operator

constant related to initial conditions of fluid

h2/(12a2) = dimensionless parameter
Young's modulus of vessel wall

zero frequency modulus, viscoelastic shell

complex Young's modulus

elastic shear modulus
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1. (¢)

ka

thickness of

[T

vessel wall

modified Bessel function of the first kind, argument ¢

(kR + ikI)a = complex axial wave number

Re(ka/a)

Im(ka/a)

elastic bulk modulus

differential

operators

radial apparent mass of blood contained in the vessel

external pressure applied to vessel

perturbed internal pressure applied to vessel

unperturbed internal pressure

viscoelastic

Tlo(l-vg)/Eh

aAp(l-vg)/Eh

Tlo/(Sth)
shell)

aAp/(sEOh)

shell)

viscoelastic

operators

= dimensionless axial stress resultant

dimensionless radial stress resultant

dimensionless axial stress resultant (viscoelastic

dimensionless radial stress resultant (viscoelastic

operators

coordinate in radial direction

circumferential wave number

time
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TlO = initial axial tension of vessel

Uy VW = displacements of vessel middle surface in axial, circumferential

and radial directions, respectively

<
i

fluid velocity
X = coordinate in axial direction
a = x/a = dimensionless axial coordinate
B = coordinate in circumferential direction
Ap =Pj, " P = transmural pressure
n = vessel wall coefficient of viscosity
fl = n/(apw\’Eo/pw ) = dimensionless vessel wall coefficient of
viscosity

uf = fluid inertia parameter

2y 2 . .
M = (1-v%)a (pwh)/Eh = wall inertia parameter
v = Poisson's ratio
v = Complex Poisson's ratio (viscoelastic shell)
5 = pf/pw = dimensionless density ratio
pf = blood density
Py = vessel wall density
) = fluid velocity potential
3 = %2(1 - cg/ci)l/2 = dimensionless parameter
W = angular frequency
o = wa/cp = dimensionless angular fregquency (elastic shell)
& = wa/cb - dimensionless angular frequency (viscoelastic shell)
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INTRODUCTION

The transmission velocity of the natural pulse wave in an artery
of given diameter and wall thickness has long been recognized as an
approximate measure of the elasticity or distensibility of that artery.l
A rough estimate of the elasticity in the form of an effective Young's

modulus can be obtained through the Moens-Korteweg equation:

2 Eh

C =
Epfa

in which c¢ denotes the signal velocity, E Young's modulus, h the
wall thickness, a the radius of the vessel, and pf the density of the
blood.

For a comparative study of different physiological situations or a
study of the effects of various stresses such as prolonged weightlessness
or acceleration on the elastic properties of blood vessels, we need a
more precise quantitative description than that afforded by the natural
pulse wave and the Moens-Korteweg equation.

If we consider the propagation of a pulse wave in the vascular system
as a problem of applied mechanics, we expect the pulse wave velocity to

be a function of the following properties and parameters:

Elastic properties of vessel wall
Diameter of vessel (geometry of vessel)
Thickness of vessel wall

Transmural pressure (blood pressure)
Shape of wave

Longitudinal stretch (tension) of vessel




Density of vessel wall

Density of blood

Mean flow and nature of flow
Viscous properties of vessel wall
Compressibility of blood
Viscosity of blood

Properties of vascular bed

The variability of these parameters and properties differs greatly and
probably also their significance in affecting the pﬁlse wave velocity.
For example, the variations in the densities of the vessel wall and the
blood will hardly ever be more than a few percent, while the transmural
pressure may vary within seconds by as much as a factor of two or more.

In any attempt to predict theoretically the manner in which a given
signal in the form of a pressure fluctuation or vessel wall displacement
propagates through the vascular system we have, of course, to resort to
approximations by introducing models for the dynamic behavior of the
blood, the complex geometry of the vessels, their elastic behavior and
the properties of the vascular bed. An incisive review of various earlier
approaches in the mathematical analysis of blood flow was published by
Fox and Saibel® in 1963.

To assess the significance of each of the properties and parameters
listed above we have begun a systematic theoretical study taking into
consideration the results of recent investigations.s—lo In the initial
phase of our analysis we have introduced the following assumptions:

1. The waves (signals) considered have the form of sinusoidal

displacements of the vessel wall.




2. The signals are sufficiently small to allow linearization of

the equations.

3. In equilibrium the vessels have the form of a circular

cylindrical shell of constant diameter and wall thickness.

4, The vessel wall has uniform and isotropic elastic or visco-

elastic properties. |

5. The blood behaves like a compressible inviscid fluid.

6. The effects of the vascular bed can be neglected.

It is convenient to divide the analysis into two distinct parts.
In the first, the wall is assumed to be purely elastic in nature, obeying
Hooke's law for small displacements. In the second part, the wall is
assumed to have linear viscoelastic properties for small displacements.

In each case, the displacements represent deviations from an equilibrium
configuration which is defined by an initial axial stretch and an initial
transmural pressure.

Our approach differs from earlier studies in that we do not restrict
ourselves to axisymmetric waves, but include in our considerations waves
which exhibit a circumferential dependence of the corresponding displace-
ments of the vessel wall. Also, we include the effects on the phase
velocities of an initial axial stretch and transmural pressure, which have
only recently been considered for low frequency axisymmetric waves by
Atabek and Lew.lo Besides this, our model for the elastic behavior of
the vessel incorporates the effects of bending rigidity, which are of
importance at all but low frequencies. The influence of blood viscosity
on dispersion has been analyzed to some extent by several investigators.s’u’lo

Their results indicate that dispersion due to the viscosity of the blood




appears to be pronounced only at very low frequencies. We have there-

fore neglected blood viscosity in this first analysis.




PART I - ELASTIC SHELL ANALYSIS
BASIC EQUATIONS

The signals considered are defined by the displacement components
u, v, w of an arbitrary point of the middle surface of the vessel in the
axial, circumferential and radial direction respectively. As illustrated
in Fig. 1, the vessel is referred to a set of cylindrical coordinates
X, r, B such that r = a represents the middle surface of the vessel
wall. The displacement components u, v, w are thus functions of the
two coordinates x and B, implying that the waves to be studied are
two-dimensional in character.

The fluid contained within the vessel is assumed to be compressible
and inviscid. Besides this we assume that the flow associated with the
signals is irrotational and that the effects of a mean flow and of gravity

can be neglected. The fluid velocity V¥ is then given by

V:—V@. (1)
Within the realm of a linearized theory the velocity potential ¢ satisfies
the three-dimensional continuity equation

2
Po - =92 (2)
2 Bt2
°r
with Ce denoting the speed of sound in the fluid. If we let 1 denote
the perturbed intra-arterial pressure, Pig the internal pressure in the

absence of a signal and gf the fluid density, the linearized Euler

equation can be written in the form

3¢
Py =P 5t ¥ Pio (s)




The velocity potential ¢ and the radial displacement component w are

interconnected through the kinematic boundary condition

v 30

3t ~ T <5;)r=a ) (+)
We now consider solutions to the continuity equation (2) of the form

o . =D I (& Dexpli H(x-ct) + 1s8] (5)

where DSC is an amplitude defined by initial conditions, s is the
circumferential wave number, & the circular frequency, c¢ the wave

velocity, IS the modified Bessel function of the first kind of order

s and
w 2.1/2
e = (30 -%). (6)
‘e

The vessel is assumed to behave like an elastic, homogeneous,
isotropic and thin-walled circular cylindrical shell, its wall thickness
is denoted by h, its Young's modulus by E and its Poisson's ratio by
v. The axial stretch of the vessel gives rise to an initiasl axial tension
T and in the presence of an external pressure P, the transmural

10

pressure Ap ds given by

Ap =D, - P, - (7)

For convenience we introduce the dimensionless stress resultants in the

axial and circumferential directions

2
i T o(1-v7)

G TE

(8)




_ asp(1-+°) 9)

2 Eh

and the two-dimensional Laplacian cperator by

2 2
$=§-—2'+'a—2 (lO)
XX B

with the non-dimensional axial coordinate @ defined by

Q
I
o]

(11)

The elastic behavior of the vessel wall is assumed to be governed by the
linearized equations for circular cylindrical shells derived by W. Flﬁggell
which have been shown to be useful also in analyzing the vibrations of
cylindrical shells that can no longer be considered as thin-walled.

Hence for small displacements from the equilibrium configuration and for
shells whose length remains unchanged after the initial axial stretch

has been applied we have the following differential equations for the

displacement components u, v, Wi

2
du
L, (a) + Ly, (v) + L g(w) + (g + va,) —-—aae
2 2
d“u  ow ou _
* q2(552 - My e 0
) )+ ) + oy * va) (12)
Ly (0) + I, (v o3\ G "YU
2 2
v , ow oV _




Lo (w) + L (v) + L .(w) - (q + )-5—23- (au-a"+52w)
31 32 33 @ * Ve, - L\ " B _6—6-2_

+ ( +opy) éfﬂ =0
T 20"

The differential operators Lij are defined as

2 2
L, = 9 5+ (lév) S 5(1 + e?)
o B
2 2
L22 _ 8 - + (léV) 6 (l + 62)
38 3F
2
L. =1 + eg(vev2 +2 o + 1) (13)
33 2
op
2
g - (an) e
Lo =iy =73 0B
3 3
d 2[5 (1-v) 9 :]
L =L = v - e -
13~ 31 XX o 2" o2
L =L -9 _ o[22V 5°
23 32 IR 2 ao628{3
where
2
82 . s - (14)
12a
uw and uf are inertia quantities associated with the wall and the fluid:
2
_(1-v7) 2
W, =~ e (pwh) (15)
2
_ (1) 2
He = TEn 2 T (16)




with m denoting the apparent mass of the fluid. By definition, we

have

_méi‘i_( - (17)
£ 52 Pi " Pio/s 7
while from the Euler equation we obtain
2
Ow (8¢)
o, 22 (& . (18)
f Btg f\ot rea
We assume solutions to Eqns. (12) of the form
u=A  expli3Ax - ct) + isp]
sc c
) .
v = BSc expli E(x—ct) + isB] (19)

. . . T
W = CSC expli E(x-ct) + isp + i 2] .

Combining Eqns. (4), (5), (17) and (18), we find for the apparent mass

I.(¢)
exi(e)

(20)

m. = pea
The substitution of (19) into (12) leads to a set of three linear homo-
geneous equations for the coefficients Asc’ Bsc and Csc' The require-
ment that non-trivial solutions exist for Asc’ Bsc and Csc then leads
to the frequency equation of the system. To reduce the frequency equation

to a convenient form we introduce the following dimensionless parameters:
2 2 -2 2,2 -2 22,2 -
cp = E/[pw(l-v )1, ¢ =¢c /CP, ® =wa /Cp’ p = pf/DWJ

o = c?/ci . (21)




Then

—~ —
w C
—(@1 - =)
c c¥*

g:

1/2

and the frequency equation can be written as

-v) 2 —
(lgv)s“(l+e2)<bg '

—2
[ 2
E_2\l+<:_1_-L+qu)+qgs

+

|

r—_——.

. |

- §l+v)

= 5
2 -
c

-2
gy W5 1ae?)]

—2

+ (1+q )s2 -w
2

10

(23)




GENERAL RESULTS OF ELASTIC SHELL ANALYSIS

The frequency equation (23) interrelates nine dimensionless param-
eters: Q1 s Vs S, h/a, 0, ®, ¢ and c*, Young's modulus E, the
wall density P, and the radius of the middle surface a do not enter
into the equation explicity, but affect the solutions as scale factors
through ®, ¢ and c*. With the aid of an IBM 709k digital com
we have determined ¢ and the corresponding mode shape defined by Asc’
Bsc and CSc as a function of the 8 other nondimensional parameters.

For each circumferential wave number s we find infinitely many
waves with individual speeds of propagation. Within the parameter ranges
pertaining to physiological problems all but the three slowest waves of
each infinite set of waves for a given s are a direct consequence of the
compressibility of the fluid. The results given as graphs in Figures 2

to 54 are based on = 1500 meters/sec and are in agreement within the

s
drawing accuracy with the results for an incompressible fluid (cf = ),
We shall identify the three slowest waves as waves of type I, IT and III.
In waves of type I the radial displacement component is dominant at high
frequencies, while in waves of type II the circumferential and in waves
of type III the axial displacement components dominate at high frequencies.
All of the faster waves exhibit cut-off frequencies (frequencies at which
the phase velocity is infinite) and are transmitted only at frequencies
above 1000 cycles/sec for physiologically meaningful parameter values.
In this investigation we shall disregard these waves and consider only
waves of type I, II and III.

The general dispersive nature of the waves of type I, II and III is

illustrated in Figure 2, which depicts the non-dimensional axial phase
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velocity ¢ = c/cP as a function of the frequency parameter o = wa/c
for s =0 through s =5 and for zero transmural pressure (q2 = 0)
and zero tethering (ql = O). The amplitude patterns corresponding to
these waves are shown in Figures 3, 4 and 5 in which the relative
magnitudes of the radial, circumferential and axial displacement compo-
nents are plotted versus ®. As is evident from Figures 2 to 5, we find
that for 4 = 0 and q2 = 0 the waves of type I, II and III also
exhibit cut-off frequencies below which no waves of the kind considered
are being propagated. For waves of type II and III the cut-off frequencies
are consistently much higher than those of the type I waves. From this
we conclude that waves of type II and III can be disregarded in non-
axisymmetric signals with predominantly low frequency components. We
also note that irrespective of the number of circumferential lobes the
amplitude pattern of a given wave generally depends strongly on the
frequency, which emphasizes the significance of allowing for the inter-

action of the three displacement components in the analysis.

Discussion of Type I Waves

The characterization of the type I waves as having a large radial
displacement component is in a strict sense only valid for high frequencies.
We see from Figure 3 that for s = O and a decreasing ® the mode shape
changes from one with a predominant radiasl displacement component into one
with a predominant axial component. Also, for s = 1 we note that for

decreasing ® the circumferential component vl begins to exceed
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slightly the radial displacement component wl. A change of the mode
shape for s = 0 with decreasing ® is also observed when the density
of the fluid is taken as zero. However, this change is more pronounced
and takes place at higher frequencies when the shell is filled with a
liquid since the apparent mass of the fluid in the radial direction for

small ® and s = O can be written as

-2

c
m, = EDfa —55 (2k)

and thus becomes unbounded as ® approaches zero. When B ~ 1l and 5,
475 9y and h/a are small compared to 1 the displacement components

for s = 0O are given approximeately by

o1 + q, + va,)

2] ~
b c(v - q,)

v=0 (25)

and as ® — O the phase velocity approaches

" (v - 0,)°
2pa 1 -20¢ (L +q + va,)

e

g Ju

When the transmural pressure and the axial stretch are zero (ql = 0,

q, = 0) and h/pa << 1, equation (26) reduces to

= _n(1-¥)
2Ea
or (27)

2 Eh
- 2pfa

3
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the familiar Moens-Korteweg equation. It is of interest to note that
when the couping between the axial and radial displacement components
is neglected, one obtains in lieu of (27)

2 Eh

¢ =T 5
2pfa(l-v )

(28)

For s=1 and @® — O the limiting phase velocity is zero while
the limiting displacement pattern is given by u =0 and v/w = 1 which
corresponds to a rigid body displacement of the cylinder in the lateral
direction.

If we let the wave number ka approach zero in the frequency
equation (25) and teke s 2 1, we find nontrivial solutions for 5, i.e.,
frequencies at which the phase velocity is infinite. Adhering to the
established nomenclature, we call these frequencies cut-off frequencies
since no waves of the kind considered are being propagated whenever the
frequency is below the cut-off value. Expanding the determinant in (23)
for small values of ka and letting ka —» O we obtain for type I waves

the following approximate expression for the cut-off frequencies:
2, 2 2, 2
s7(s7-1)(1+q,)[e7(s7-1) + q,]
2

~ 2, 2 2 — &
1+ e (s7-1)7 + 8" + (l+q2)s(s+p K)

(29)

w

which is based on the assumptions that P ~ 1, s <5, and that 40 9
and h/a are small compared to 1. From (29) we conclude that the cut-
off frequencies are independent of the axial stretch aq - Poisson's ratio v,
Young's modulus E and the wall density pW do not appear in equation
(29) but come into play through the reference velocity cp. For

2( 2

s >> e“(s” - 1) the cut-off frequency is approximately proportional to
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NG;; . This dependence of the cut-off frequency on the transmural
pressure is clearly illustrated in the lower half of Figure 6, which
gives the phase velocity for s = 2 and various values of - When we
let the transmural pressure assume negative values we find that at a
critical value corresponding to Q = - e2(s2 - 1) the cut-off frequency
becomes zero and the system reaches a limiting stability boundary.

On the basis of the same approximations leading to (29) we find that

the mode shapes of type 1 waves at the cut-off frequencies are given by
e?(s%-1)% + (s - 1)

)]

v

W

s(l+q2)[l + s(s+p

Nl-""‘
S

(30)
u=20.
Within the realm of physiologically meeningful parameter values, including
the case when the transmural pressure is near the critical pressure, we

can replace (30) by

without introducing a substantial error.

Discussion of Type II Waves

Axisymmetric type II waves (s = 0) have no displacement components
in the axial and radiasl direction. They are nondispersive and their

Propagation velocity is given by

o2 oL 2 32
¢ ==3 (1 + 3e7) + Qy + va, - (32)
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These waves are obviously identical with the axisymmetric torsional
waves of an empty cylindrical shell since there is no coupling between
an inviscid fluid and such a wave motion. For s £ O all type II waves

have cut-off frequencies at

e = ¥ 52(1 + 82) +q & (23)
2 2

Also, as shown in Figure 4, at cut-off the mode shapes have only an axial

displacement component, but at higher frequencies they become almost

purely circumferential. The phase velocity of the nonaxisymmetric type

II waves spproach asymptotically that of the symmetric wave as indicated

in Figure 2.

Discussion of Type III Waves

Unlike the case of an empty cylindrical shell, we do not find a
cut-off frequency for axisymmetric type II waves6 but obtain with ® — O
a limiting phase velocity given approximately by

2
(v - aq,) (s)

—

¢ ~1+q, +vg, -
17 Y% —a

1-20 (1 +q +vg,)

when o ~ 1 and 95 9 and h/a are small compared to 1. However,
when we let the density of the fluid approach zero, the frequency
equation (23) yields the established value for the cut-off frequency of

such waves:
=1+ e . (35)

Non-axisymmetric waves of type III exhibit cut-off frequencies as

indicated in Figure 2. The expansion of the determinant in (23) for
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small wave numbers ka leads to the following approximate expression for

the cut-off frequencies:

~ 1+ e2(s2-l)2 +q 4 s(l+q2)(s +92)1 (36)

2 h

while we find for the displacement pattern at cut-off

o (@ra)(s+p %)

W

(37)

1+ eg(sg-l)2 + q2s2
u=20.

Relations (36) and (57) are again based on the assumptions that E ~ 1,
s <5 and that ql, q2 and h/a are small compared to 1. The mode
shapes become predominantly radial in nature at high frequencies as shown

in Figure 5 and the phase velocities all approach asymptotically

o1+ q, *va, - 2 . (38)

PARAMETRIC STUDY OF TYPE I WAVES

The mode shapes of type II and III waves consistently have small
displacement components in the radial direction and thus are associated
with much smaller fluctuastions of the intraluminal pressure than are type
1 waves. Since we are primarily interested in the propagation of pressure
waves we focus our attention initially to a parametric study of type I
waves. However, for the sake of completeness, we later also examine
the effects of certain parameters on the properties of type II and I1II

waves.
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Effects of Transmural Pressure and Axial Stretch

The effects of a transmural pressure and apn axial stretch on the
phase velocities and mode shapes of type I waves are illustrated in
Figures 6 to 9 for s =0 and s = 2. The phase velocities and mode
shapes have been computed for a set of transmural pressures corresponding
to q, = 0.1, 0.2, 0.5 and 0.8 and a set of axial stretch values corre-
sponding to q; = 0.1 and 0.2. The selected parameter values can be
given physiologically meaningful interpretation. We have for example
q, = 0.1 if E = lO6 dynes/cmg, v = 0.5, h/a = 0.1, and Ap = 10 mm Hg,
while q = 0.1 represents an initial axial strain of 13.3% at zero
transmural pressure and v = 0.5. From Figures 6 and 7 we note that with
increasing transmural pressure the phase velocity generally increases
for both axisymmetric and nonasixymmetric waves. For ® < 0.2 the
nondimensional phase velocity ¢ of the axisymmetric waves increases
less than 30% when q, 1is increased form O to 0.8, while for
0.2 <® < 1.0 the corresponding increase is at most 125%. 1In stating
this result it should be mentioned that the shell equations used in this
analysis require ¢, and a4y to be "small" in comparison to 1.0, which
implies that the curves for qQ = 0.8 should be considered only as rough
gpproximations.

While the phase velocities and mode shapes of axisymmetric waves are
not drastically changed by moderate transmural pressures, we find that
the non-axisymmetric waves s = 2 are significantly affected. Since in
the i1llustrated example Qb >> e2(s2 - 1), the cut-off frequencies
increase approximately as J&Q , which may mean the complete disappear-

ance of waves of this type from the frequency interval O < w < 1000
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cycles/second with a sufficient increase in transmural pressure. As
indicated earlier, the cut-off frequency for s = 2 approaches zero
and the system becomes unstable if we let the transmural pressure fall
below certain négative values. If we have again E = lO6 dynes/cmz,
v = 0.5, h/a = 0.1 and q = 0 we find as critical pressure at which
the system becomes instable Ap = -0.25 mm Hg.

For axisymmetric waves of type I the effect of tethering or axial
stretch is small at low frequencies but becomes reasonably significant
at higher frequencies where an increase in stretch corresponding to a
change of qy from O to 0.2 causes an increase in wave velocity of
almost lOO%, as illustrated in Figure 8. For s = 2 the wave velocity
is markedly increased at all frequencies by essentially a constant amount
while the cut-off frequency is independent of ;- As may be seen from
Figure 9, an increase in axial stretch has only little effect on the mode

shapes of the waves.

Effects of Geometry, Poisson's Ratio and the Density Ratio

The effect of geometry is examined by comparing phase velocities
and mode shapes for h/a = 0.01, 0.03, 0.1 and 0.2. The range 0.0l <
h/a < 0.1 is of interest for veins, while h/a values between 0.1 and
0.3 pertain to arteries. It appears from the graphs in Figures 10 and 11
that the phase velocities and mode shapes of type I waves for s = o,
s = 2 are greatly affected by changes in h/a and that arteries and
veins of like diameter should have distinctly different wave propagation
characteristics if they have identical Young's moduli. It should be

noted that the radius of the middle surface of the vessel has merely a
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scaling effect through the nondimensional frequency parameter o =
wa/c, .

According to the graphs in Figures 12 and 13 we find that a change
of Poisson's ratio from 0.5 to 0.3 practically does not alter the wave
velocity but affects the mode shape to some extent through the reference
wave velocity cp. Finally we conclude from the dispersion curves given
in Figures 14 and 15 that minor variations in blood density or wall
density should have little effect on the propagation of type I waves
since a 10% change of P leads to less than 10% change in the phase

velocities.

PARAMETRIC STUDY OF TYPE II AND TYPE III WAVES

Effects of Transmural Pressure and Axial Stretch

Figure 16 illustrates the effects of a transmural pressure on axi-
symmetric type II and type III waves, with a type I wave for q, = 0
presented for purposes of comparison. As in the type I case, type II
and IITI phase velocities increase with increasing transmural pressure.
However, while type I waves nearly double their phase velocities when
a5 is increased from O to 0.2, those of type II increase less than 20%
and those of type III less than 5%. Type II waves remain non-dispersive.
Type III waves exhibit dispersion of less than 0.5% for ® < 5.0, which
is so small that it falls within the plotting accuracy of the curves
in Figure 16. The mode shapes corresponding to type II waves rcmain
purely circumferential, while the radial component of type 11l waves,
which are small for Q, = 0, Dbecome even small with increasing trans-
mural pressure, as can be seen in Figure 17.
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Nonaxisymmetric s = 2 waves change their phase velocities and

cut-off frequencies markedly with transmural pressure. Figure 16

increasing a4 is not as great as in the case of type I waves. From
Figure 18, it is evident that mode shapes are not significantly altered
by the presence of a transmural pressure, except that the cut-off
frequencies are increased.

Figures 19, 20 and 21 illustrate the effect of an axial stretch
for values of q between O and O.bk. For s =0 and s =2 the phase
velocities generally increase with increasing Q- The type II and type
IIT cut-off frequencies for nonaxisymmetric waves remain independent of
qq- Comparing Figures 16 and 19, it can be seen that the changes in the
phase velocities of axisymmetric waves produced by an axial stretch with
given 4 is essentially the same as those changes produced by a trans-
mural pressure corresponding to a value of q = ql/v. Mode shapes again
are not significantly altered by the presence of an axial stretch. A
review of the results given for axisymmetric type III waves indicates
that the phase velocities appear to be more sensitive to small changes in
the axial stretch parameter q than to small changes in the transmural
pressure parameter q2. Conversely, the amplitude pattern of such waves

shows a greater sensitivity to changes in the parameter 9 than to Q-

Effects of Geometry, Poisson's Ratio and the Density Ratio

Unlike the case of type I waves, the phase velocities of waves of
type II and III are only mildly affected by changes in the thickness
ratio h/a, as shown in Figures 22, 23 and 24. In the axisymmetric
case, this result for type II waves is well-known and follows immediately

from equation (32). As is evident from equations (33) and (36) the cut-
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off frequencies for s = 2 waves are shifted to slightly higher values
as h/a is increased. The axial and circumferentiasl mode shapes of
type Il and III waves remain practically unchanged as h/a is varied.
In the radial direction, however, the displacement is approximately
proportional to h/a. This last result could be of experimental signif-
icance, since a larger radial displacement implies a larger pressure,
which in turn suggests that non-axisymmetric waves of type II and

ITT should be more readily observed in thick walled tubes.

Figures 25, 26 and 27 show that the non-dimensional phase
velocities of type II waves are strongly affected by changes in Poisson's
ratio for the s =0 and s =2 waves. The type II mode shape remains
circumferential when s = O. When s = 2, mode shapes of type II waves
are essentially unchanged when v is varied, except that the cut-off
frequencies are increased. ILikewise, phase velocities and mode shapes
of type III waves for both s =0 and s = 2 remain nearly unaltered
by variations in v. However, it should be emphasized at this point that
Poisson's ratio enters into the reference speed Cp utilized in the
normalization of both the phase velocities and frequencies, so that the
dimensionalized type III phase velocities and mode shapes will be strong
functions of v.

The phase velocities of axisymmetric type II waves are independent
of the density ratio p, as is evident from equation (32). Changes in
type IIT axisymmetric waves are less than 0.15% for 0.9 < p < 1.1, when
h/a = 0.1, 4 =4, = O and v = 0.5, and are therefore entirely insignif-
icant for studying the propagation of such waves in b}ood vessels.

Similarly, when s = 2, density ratio variations for 0.9 < p < 1.1
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have no pronounced effect on type II waves but a noticeable effect on
type III waves near the cut-off frequencies. From equation (36) it

follows that the type III cut-off frequencies increase only 0.7% as o
decreases from 1.1 to 0.9, and the values for h/a, 7 q2 eand Vv are
the same as those given above. Mode shapes are all virtually identical

to those for E = 1.0 except for the small variation in the cut-off

frequency of type III waves.
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PART IT - VISCOELASTIC SHELL ANALYSIS

EFFECTS OF VISCOELASTICITY OF THE VESSEL WALL ON THE DISPERSION AND

DISSIPATION OF WAVES

Introduction

The propagation of sounds and pulse waves within the cardiovascular
system is subject to strong dissipative mechanisms. The dissipation of
waves in blood vessels can be attributed to three main causes: viscosity
of the blood, viscoelastic behavior of the wall, and radiation of energy
into the surrounding medium. Some data on the combined effect of the
various dissipative mechanisms in arteries under in vivo conditions has
been deduced from simultaneous recordings of the natural pulse wave at
various points along the aorta and other arteries of anesthetized dogs.
The data take into account the effects of reflections and dispersion and
are based on the assumption that the propagation of pressure pulses
generated by the heart is governed by linear laws that permit a harmonic
analysis.

Several mathematical models have been postulated for dissipative

mechanismslh’15’16’17

which take into consideration the viscosity of
the fluid and viscoelastic properties of the vessel wall, but which
largely adhere to a membrane analysis and exclusively consider only
axisymmetric waves of type I. Also, these models have neglected the

presence of an axial stretch and a transmural pressure, both of which

play a significant role.
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Recently, techniques have been developed which make possible the
direct measurement of dissipation in veins as well as in arteries.l
These direct methods are not subject to certain of the inaccuracies
inherent in the indirect techniques which have been previously employed.
Results from direct arterial and venous experiments on anesthetized dogs
reveal a strong frequency dependence of the dissipation at frequencies
between 50 and 200 cycles per second. The magnitude of the dissipation,
however, is markedly less than one might expect from the data obtained
through the indirect methods.

It has been shown theoreticallyl9

that for the frequency range
covered in the direct dissipation measurements described in Reference 18
the effects of fluid viscosity are unimportant as far as the dispersion
and dissipation of symmetric type I waves are concerned. Therefore, in
this section, the fluid will again be treated as inviscid. Even though
the contribution of the surrounding medium to the dissipation of waves

will most likely be of importance, it will not be investigated in this

study.

VISCOELASTIC SHELL EQUATIONS

In the three-dimensional theory of linear viscoelasticity, an
isotropic viscoelasticmaterial is described by means of relationships

specifying the material's behavior in shear and in dilitation; i.e.,

P(r;5) = Qyg) 1,3 = 1,231 4 (39)
and
5P (0y;) = Q'(eyy) (50)
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where P, Q, P' and Q' are linear differential operators of the form

_ 2 n
L(D) = ay +aD+aD +...+aD (41)

with D = 3/dt. The coefficients a; are constants, and the operators
P and Q may be chosen independent of P' and Q'. The viscoelastic

equations are analogous to the elastic relations

Ty = O(vyy) 1,0 = 1,235 1 4 (k2)

and

Wi

0.4 = Keii (43)

in which G and K are the shear modulus and bulk modulus, respectively.

From the elastic relationships

E E
G = 2(1+v) K==s15% (k)
and from the formal equivalences
QP =G, Q'/pt =K (45)

one may, by algebraic manipulations, define operators E and Vv in terms

of the viscoelastic operators P, Q, P' and Q'. One obtains

~  9Q

E = P+ BT (46)
and

~ 3Q'P - 2qP'

Y = 2(RF + QP") (47)

Replacing the Young's modulus E and Poisson's ratio Vv in the

differential equations of motion for the fluid filled elastic vessel
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(equations (12) ana (13)) by the operators E and Vv as defined by
equations (46) and (47), one arrives at the differential equations of
motion corresponding to a linearly viscoelastic vessel wall. The fluid
equations of motion and kinematic boundary conditions are clearly
unaffected by the assumptions made on the vessel wall material, so that
the apparent mass term remains unchanged.

As in the case of the elastic shell, solutions of the form

u = A expli(kx - ot + sB)]
v = B expl[i(kx - wt + sB)] (48)
w = C exp[i(kx ~ ot + sB + g]

are assumed. In the corresponding frequency equatiocn the wave number
k = kR + ikI must have a positive imaginary part if attenuation is to be
present. The phase velocity of signals with an angular frequency  1is
given by c¢ = w/kR, while the signal is attenuated by a factor of
exp(-ka) after travelling a dis
Tt should be noted that for the trial solution (48) the frequency
equation can be obtained by formally substituting - iw for D 1in the
operators E and v given by equations (46) and (47) and by replacing
E and v in the elastic frequencyequatﬂnl(EB) by E and V. Therefore,
it is possible to arrive directly at the viscoelastic frequency equation
without formally deriving the viscoelastic differential equations of

motion. It is clear that the viscoelastic parameters corresponding to

E and v will be complex, and for the sake of clarity, they will be

denoted E and ¥, respectively:
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=

-8 (49)
3Q'P + QP!

 3Q'P - 2QP
2(34'P + QB')

<>

I
—
N

O
~—

with

_Q'

D - -in

O
—
€
-
1

VISCOELASTIC MODELS

In one-dimensional linear viscoelasticity it is convenient to
interpret expressions of the form Po = Q€ as a mathematical model of a
mechanical system consisting of springs and dashpots. Because of mathe-
matical complexities, this mechanical system is usually restricted to
three simple models: the standard linear solid, the Maxwell fluid, and
the Voigt solid. In the three-dimensional case the problem may become
completely intractsble when independent models for both the shear and
dilitational behavior of the material must be selected. A major
simplification can be achieved if the material is assumed to be incom-
pressible. Utilizing the fact that most biological materials, including

blood vessels, are nearly incompressible, we assume that
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Bt
— -o0. (52)
Q.'

From this it follows that

E = 3q/p (53)

and

<>
i

1
5" (5%)

Thus the viscoelastic properties of the material are now completely
determined by its behavior in shear and a single viscoelastic model
suffices to describe the behavior of the material. In the case of the

three simple models mentioned above, E becomes:

. E,E, 1- inw/E2
Standard linear solid E = S - =
: A = 3imw
Maxwell fluid E = 1T tho/E]) (55)
Voigt solid E = 3(E, - imw).

Irrespective of the viscoelastic behavior, ﬁ may be written in the

form

E - ﬁR(a)) + iﬁl(w). (56)

In fact, equations (56) and (54) may be taken as the starting point for
an analysis of waves in a viscoelastic vessel, with the functions

ﬁR(w) and ﬁI(w) selected so as to exhibit certain properties determined
from experimental data. Such an approach has been employed in References

15, 16 and 17. However, these investigations have been restricted to
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axisymmetric vibrations using an unrealistic mechanical model for the
vessel, since initial axial stretch and a transmural pressure were
neglected. Of interest is a systematic analysis of the effects of a
viscoelastic behavior of the vessel wall including the influence of
initial loading, bending rigidity, and also allowing for non-symmetrical
waves.

Of the three simple viscoelastic models considered here, it is
clear that the standard linear solid allows for the most complete
representation of the viscoelastic behavior of blood vessels, since it
includes the Maxwell fluid and Voigt solid as special cases. However,
three independent parameters must be selected to define such a solid,
while only two are needed for the Maxwell or Voigt model. For a thorough
parametric analysis, the computational effort increases considerably with
each additional parameter. Therefore, attention will be restricted to
the Maxwell and Voigt models.

The decision as to whether the Maxwell or Voigt model is the more
appropriate must be made on the basis of experimental evidence. Results
of recent experimentsl8 indicate that in the range from 50 to 200 cycles
per second the damping per wavelength of type I waves in the thoracic
aorta of anesthetized dogs is essentially independent of frequency.
Assuming, as a first approximation, that the phase velocity c¢ of type I

waves is given by the Moens-Korteweg formula

for all frequencies, it follows that in the viscoelastic case the damping

per wavelength for the Voigt model in shear is given by
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1/2
A \[l + 5ﬁ2a32 -1
AT exP- 2| ——— (57)
© \/1 + 3HGE + 1_|
while the Maxwell model yields
1/2
A | DD .\
7\ l + A -
A_ = e}{p - 2]‘[ l/3n l . (58)
o] A2 A2
\/ 1+ 1/30°8° + 1

In these expressions AO and AK are the wave amplitudes at x = 0O and
x = A, respectively, with A denoting the wavelength. For large &,
A)\/AO approaches exp(-2n) for the Voigt model and 1.0 for the Maxwell
model. From this we conclude that at high frequencies the Maxwell model
predicts an extremely small attenuation, which is in contrast with
experimental observations. It should be noted that the phase velocity

¢ and A?\/AO have also been determined by solving the frequency equation
for the wviscoelastic shell using the Maxwell model. The results again
show that the Maxwell model does not lead to damping characteristics and
phase velocities which are in agreement with experimental evidence. On
the other hand, as will be shown, the Voigt model reflects more realistic
wave propagation characteristics. We have therefore restricted our

parametric study of wave propagation to blood vessels whose shear deforma-

tion is governed by a Voigt model.

NORMALIZATTION

In the elastic case we introduced as normalizing velocity
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. 1/2
C -

P _ 2
o, (1-v7)

(59)

Since, for viscoelastic material E and v are in general both complex
functions of frequency, the above expression for ¢ would lead to a
complex velocity. We avoid this by introducing in lieu of the above

definition a normalizing velocity

e, == (60)

where EO is real and is equal to the value of the complex Young's

modulus E taken for ® = O. In particular, for the Voigt model we have

e =209 (61)

a2 2,2
& =c /cb
o]
@ = w ag/ci
Ayl 2, 2
* = 62
é Cf/cb (62)

aAp/SEOh

o)
n
I

n/(ap_ JEO7OW)

S
1

It is interesting to note that in the expression for ﬁ the quantity

(Eo/pw)l/2 has the dimension of a speed. Hence, 1/f may be considered
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to be a viscoelastic Reynold's number, in which the tube radius a is

the characteristic length and (Eo/pw)l/2 the characteristic speed.

RESULTS OF VISCOELASTIC SHELL: ANALYSIS

The frequency equation for the viscoelastic case interrelates eleven
dimensionless parameters ¥, s, h/a, o, @l, @2, @, &, &%, kg, and 1.
The first nine parameters are basically the same as in the elastic case,
except that the five parameters @l, @2, &, ¢, and &* differ by
constant factors from e q2, 5, 3, and c¢*. In addition to these first
nine parameters we now have also a measure of the wave attenuation in the
form of kIa, the imaginary part of the complex wave number, and the
dimensionless coefficient of viscosity ﬁ. It is convenient and more
descriptive to present the effects of damping in the form of the amplitude
ratio A?\/AO in lieu of kIa. From equation (48) it follows immediately
that AA/Ao is given by

kI
A)\/AO = exp[-2n =], (63)

KR

Within the range of parameter values encountered in physiological
problems, we again find that all but the three slowest modes are a direct
consequence of fluid compressibility. Adhering to the same nomenclature
as in the elastic case, we again identify these three slowest modes as

waves of types I, II and III. ‘

Discussion of Axisymmetric Waves

Figure 28 presents the non-dimensional axial phase velocity & for

axisymmetric waves as a function of the non-dimensional viscosity
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coefficient ﬁ ranging from O (elastic case) to 1.0. It should be
recalled that type I waves have a displacement pattern that is predom-
inantly radial in nature and therefore have associated with them consid-
erably stronger pressure fluctuations than waves of type II and III. We
note that as & approaches zero the phase velocity of each of the three
types of waves approaches a limiting value which is independent of ﬁ
and which is identical with the limiting value obtained in the elastic
case.

For ﬁﬁ << 1l and 2 << 1 we can determine the phase velocities of

type I waves approximately from
— 2 — a
o 1 [ Fa -5 )

C ~ >
(1-v7) (V1.+ BB + 1 )

From this it follows immediately that at very low frequencies the effects

(64)

of viscoelasticity on dispersion of axisymmetric waves in a thin walled
vessel is only of second order. This result is of particular significance
since it predicts that the viscoelastic behavior of blood vessels will
practically have no effect on the phase velocities at low frequencies.
Therefore, one cannot expect to determine reliably the viscoelastic param-
eters of blood vessels on the basis of phase velocity measurements of
pressure waves.

The frequency equation yields an exact expression for the phase

velocities of type II waves, which can be written in the form

2 (L +3e7) (1 + 35°6°)
& = : (65)
(1L +v) ( - )
1+3nd +1
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For type III waves no closed form expression can be given for the phase
velocities. However, with the restriction ﬁﬁ << 1l we find approxi-

mately for the speeds of axisymmetric type III waves

2 1 [1- /0 -2 D]
(l-ve) (\/l + Bﬁ%ﬁg + 1 )

As can be seen from Figure 28, type II and III waves become highly

(66)

S

dispersive as 1 is increased from 0.0 to 1.0, although equations (65) and

(66) indicate that the dispersion will be only of second order for small

Figure 29 depicts the damping per wavelength of axisymmetric waves
as a function of the frequency parameter & for 0.0 < ﬁ £ 1.0. In the
case of type I waves, the curves indicate that for & = 0.4 the damping
ratio A?\/Ao is essentially independent of frequency, for all values of
ﬁ < 1.0, This property lends support to the appropriateness of the
Voigt solid in shear as a model for the viscoelastic behavior of the
vessel wall, since recent wave propagation experiments in the thoracic
and abdominal aorta of anesthetized dogs have exhibited similar damping
characteristics.18 In this connection it should be emphasized that the
experimental data referred to here includes the contribution of blood
viscosity and radiation of energy into the vascular bed to the attenuation
of waves in addition to the dissipation in the wall due to its viscoelas-
ticity. A comparison of our theoretical results with experimental data
from Reference 18 suggests that ﬁ is less than 0.5 over the frequency

range of 50 to 200 cycles per second. This contrasts with ﬁ ~ 5 implied

by Reference 15 for low frequency waves in the abdominal aorta of dogs.
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At very low frequencies type II and type III waves are not as
heavily damped as those of type I but are more heavily damped when
& 2 0.4. For waves of type II the amplitude ratio A?\/AO can be given
in closed form as

1/2
(1 + 3T]2(52)1/2 1

o (1 + 3ﬁ2&2)1/2 +1

(67)

No such closed form expression for A)\/AO can be given for type I and
III waves. However, when N0 << 1.0, the damping ratio for all three

types can be approximated by

A
-Az\-mexp(-VSnﬁcG ) ~ 1 - N3ThRd . (68)
)

From equation (68) we conclude that, for small A0, the damping ratio
decreases linearly with f or &.

The mode shapes for axisymmetric waves are nearly independent of
i for 7 <1.0, as is evident from Figure 30. Only the radial components
of type III waves show any noticeable change with 7. Changes in the type
I mode shapes are so small as to fall within the plotting accuracy of
the curves.

Figure 31 depicts the phase velocities of axisymmetric type I, II
and IIT waves for 1 = 0.5 and for four values of the axial tethering
parameter él' While dispersion of type I waves due to tethering is
only significant at higher frequencies, we find that tethering affects
the speed of waves of type II and III primarily at lower frequencies.

From Figure 32, it is seen that axial tethering has a marked effect on

the magnitude of the damping of type I waves for # = 0.5. When

36




él = 0.2 the attenuation per wavelength at high frequencies is less

than half of that for @l = 0. This serves to emphasize that viscoelastic
parameters extracted from data pertaining to high frequency pressure
waves may be seriously in error if vessel tethering is not considered.

The effect of tethering on the mode shapes of axisymmetric waves is
negligible, as can be seen from Figure 33.

The results of the effects of a transmural pressure on the dispersion,
mode shapes and attenuation of axisymmetric waves are illustrated in
Figures 34, 35 and 36. We note that the effects on the wave propagation
characteristics of a transmural pressure and an axial stretch are guite
similar in nature. This is to be expected, since the vessel was assumed
to be fixed at its ends, which means that an internal pressure Ap will
introduce a corresponding axial stress of magnitude vApa/h.

The thickness ratio h/a significantly affects the phase velocities
of type I waves, as in the elastic case, but leaves the speed of type II
and type III waves nearly unchanged, as can be seen from Figure 37.
According to Figure 38, the damping ratio A?\/Ao is remarkably insensitive
to variations in h/a for all three types of waves. Similarly, we find

no significant changes in the mode shapes for different values of h/a.

Discussion of Non-Axisymmetric Waves

In the case of vessels with an elastic wall material, it was shown
earlier that cut-off frequencies exist for non-axigymmetric waves of types
I, IT and TII, with the sole exception of type I waves with s = 1. If
the vessel wall is composed of an incompressible viscoelastic material,

whose shear deformation is governed by the Voigt model, we nc longer find
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cut-off frequencies in the classical sense. Non-axisymmetric waves are now
theoretically being propagated at all frequencies. However, as will be
seen, the amplitude ratio AA/AO of waves propagating near and below the
corresponding elastic cut-off frequency is so small that the experimental
verification of their existence would be a question of sensitivity of the
transducers utilized. For practical purposes one might therefore consider
introducing a cut-off frequency on the basis of a minimal ocbservable wave

amplitude.

Discussion of waves with s = 1.

For s =1 the phase velocities of type I waves exhibit only mild
dispersion when 1 varies between O and 1.0, as can be seen from Figure
40. On the other hand, the speed of waves of type II and III are strongly
dependent on f and &. Except for 1 = 0, cut-off frequencies no
longer exist for type II and type III waves, although this is not readily
apparent from Figure 40. Considering, however, the variation of the mode
shapes with frequency, as illustrated in Figure 42, we note that waves
are indeed being propagated below the elastic cut-off frequency for all
values of 1 covered in our parametric study. We also see that the mode
shape of type I waves is practically unaltered by increasing 17 from
O to 1.0, while the type II and type III mode shapes exhibit great sensi-
tivity to changes in 1.

According to Figure 41, type I waves exhibit attenuation properties
similar to those of axisymmetric type I waves, i.e., the attenuation per
wavelength is again essentially independent of frequency for & >> O.h.

In contrast to this, even comparatively small values of 7 lead to a
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strong attenuation per wavelength as compared with the axisymmetric

case.

Discussion of waves with s = 2

From the results given in Figure 43, we again note that the speed of
propagation of type I waves is only mildly affected by changes in 1
between O and 1.0. The phase velocities of type II and III waves on the
other hand are strongly dependent on the viscoelasticity of the vessel
wall. Propagation of all three types of waves below the elastic cut-off
frequencies is again possible but damping per wavelength below cut-off
is so high that they can be ignored.

From Figure 45 it follows that type II and III mode shapes exhibit
strong dependence on the parameter 7 for all & < 4.0, while the mode
shape for O < 1 < 1.0 is indistinguishable from that of the elastic
case (f = 0).

Figures 46 through 48 illustrate the sensitivity of both & and
A)\/AO to axial tethering when 7 = 0.5. Near the elastic cut-off
frequency, type I phase velocities may double in magnitude as @l is
increased from O to 0.2. Likewise, the amplitude ratioc may grow by more
than a factor of two with the same change in tethering. The sensitivity
of the phase velocities and demping characteristics of type II and III
waves to changes in axial stretch may be equally pronounced, but for
practical purposes unimportant in view of the heavy damping. From Figure
48, we see that mode shapes show no significant dependence on ﬁl except

at low frequencies.
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The effects of a transmural pressure on phase velocities, damping
characteristics and mode shapes of s = 2 waves are summarized in
Figures 49, 50 and 51 for 1 = 0.5. The dispersive nature of these waves
is essentially similar to that of the elastic case, except for the
existence of waves below the elastic cut-off frequency. The amplitude
ratio A%/Ao of type I waves increases markedly with rising transmural
pressure, while the absolute changes in the amplitude ratio of type II
and IIT waves may be termed insignificant.

The results plotted in Figures 52 through 54 illustrate the influence
of changes in the thickness ratio h/a on the propagation characteristics
of s =2 waves for 7 = 0.5. Variations in the thickness ratio have a
strong influence on the phase velocities of waves of type I. Except near
the elastic cut-off frequencies, the phase velocities of type I waves
vary approximately as (h/a)l/g. On the other hand, Figures 53 and 5.4
demonstrate that the damping characteristics and mode shapes of such waves
are only moderately affected by variations in h/a. Waves of type II and
ITITI show only unimportant changes in their characteristics with respect
to changes in h/a except below the elastic cut-off frequencies. It
becomes clear, however, from Figure 53, that these changes are of no

practical significance because of the severe damping.

CONCLUSIONS

From our dispersion curves we conclude that a realistic model for the
dynamic behavior of blood vessels should include the effects of the trans-
mural pressure and the axial stretch. The propagation of pressure pulses

similar to those generated by the heart appears to involve primarily
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symmetric waves of type I since waves of type II are not connected with
intraluminal pressure fluctuations and waves of type III exhibit only
very small pressure perturbations. Qualitative agreement is obtained
with recent experiments on dissipation of high frequency waves in blood
vessels by assuming that the vessel wall material is incompressible but
behaves as a Veoigt sclid in shear. The phase velocities of type I axi-
symmetric waves are only mildly affected by such viscoelastic behavior,
so that it will be difficult to obtain accurate estimates of the visco=-
elastic parameters of the vessel wall on the basis of type I phase
velocity measurements only. The dissipation of waves, however, exhibits
a strong dependence on the viscoelastic properties of the vessel wall.
Moreover, the dissipation decreases substantially with increasing axial
stretch or transmural pressure, especially at high frequencies. Conse-
guently, the reliable determination of the viscoelasticity of the vessel
wall from experiments involving high frequency wave propagation must take
into consideration the effects of eaxial stretch and transmural pressure.
Considering the striking dispersive properties of non-sxisymmetric waves,
their experimental verification would offer deeper insight into the
viscoelastic behavior of arteries and veins. The effects of the compres-
sibility of the blood are insignificant for waves with frequencies below

1000 cycles per second.
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